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This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert
space. It is our concern to apply the methodology for smoothing experimental data where
some level of knowledge about the approximate shape, local inhomogeneities or points
where the desired function changes its curvature is known a priori or can be derived based
on the observed noisy data. We propose locally-based kernel PLS regression that extends
the previous kernel PLS methodology, by incorporating this knowledge. We compare our

approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage
techniques on two generated data sets.

1 Introduction

There has been significant advancement in developing non-parametric regression techniques

during the last several decades with the aim of smoothing observed data corrupted by some

level of noise. A subset of these techniques is based on defining an appropriate dictionary of

basis functions from which the final regression model is constructed. The model is usually

defined to be a linear combination of functions selected from the dictionary. The widely used

methods like smoothing splines and wavelet shrinkage belong to this category (-Wahba, 1990;

Donoho & Johnstone, 1995). These smoothing techniques have also been successfully applied

to problems of signal de-noising which involves a wide area of research in the signal processing

-d6i'h-_tihi_y: .........

In this setting we usually assume the signal of interest to be a linear combination of the

selected basis functions ¢i (x) E D

p

=
i-----1

wher@/9 represents a dictionary (family) of functions and {w_}_=l are weighting coefficients.

The main problem associated with this approach is the appropriate definition of/:) and the

selection of a subset of basis functions used for the final model. Using a fixed dictionary of sev-

eral basis functions, e.g., all polynomials up to the order d or several trigonometric functions,



may provide an easier selection among basis functions, but in general may not guarantee the

possibility to closely approximate the desired signal of interest. On the other side defining

our solution in a "rich" functional space may guarantee exact functional approximation of

the signal of interest, however in a noisy scenario we may have a bigger problem of finding an

adequate final estimate of the signal of interest. Smoothing splines and closely related support

vector machines (SVM) are examples of this second approach (Wahba, 1990; Vapnik, 1998;

Cristianini _ Shawe-Taylor, 2000; SchSlkopf _ Smola, 2002). The solution is defined to lay

in a rich functional space and as such it can be expressed in the basis of the space (possibly

infinite). However to avoid exact fitting of a measured noisy signal we need to incorporate

some a priori assumptions about the smoothness of the desired signal of interest which is

usually achieved through di_ff_erent forms of regularization. The appropriate functional space

and regularization form selection for different types of noise distribution and types of signals
are the main drawbacks of these methods.

In this paper we propose a novel approach which tries to combine both of these strategies.

We consider our solution to be in a reproducing kernel Hilbert space (RKHS) (Aronszajn,

1950; Saitoh, 1988). A straightforward connection between a RKHS and the corresponding

feature space representation allows us to define the desired solution in a form of penalized

- linear recession_model._ .More specifically, w_e.ctmaislei a k ar.n.e!_partial l_ea_s.ts_guares (PLS)

regression in a feature space .;r (Rosipal _ Trejo, 2001). The basis functions ¢i(x) are taken

to be components obtain by kernel PLS, which may be seen as the estimates of an orthogonal

basis in .7- defined by the measured signal and the kernel function used. These estimates

are sequentially obtained using the existing correlations between nonlinearly mapped input

data into jr and the measured noisy signal, that is, extracted basis functions closely reflect

existing input-output dependencies. This methodology differs from the existing approaches

in the sense that the construction of the basis functions is given by the measured signal itself

and is not a priori pre-defined without respect to the measured signal. The second stage of

the proposed approach reduces to the problem of setting the number of basis functions p. The

sequential structure of the extracted basis functions with respect to increasing description of

the overall variance of the measured signal motivates our use of the Vapnik-Chervonnekis

(VC) based model selection criterion (Cherkassky et al., 1999; Cherkassky _ Shao, 2001).

Finally, we extend this methodology of kernel PLS smoothing by assuming a set of locally-

based kernel PLS models which allows us to more effectively deal with possible local inho-

mogeneities in the signal of interest. It is our intention to include a priori information about

an approximate location of points of change of the signal curvature, discontinuities or other

local inhomogeneities occurring in the signal. This approach is proposed for problems where

this kind of information is known a priori o_r_can be de[ived from the experimental data.

.... _T_h_espati.al lo_ca.li_zation of individual kernel PLS models is achieved by incorporating weight

functions reflecting the local areas of interest. Depending on weight function se-lec-t-ion-t-l_s

allows us to construct soft or hard thresholding regions where kernel PLS regression models

are constructed. Final regression estimate consists of the weighted summation of individual

local kernel PLS regression mQdels.

We compared our methodology of kernel PLS and locally-based kernel PLS smoothing

with the state-of-the-art wavelet based signal de-noising, smoothing splines and hybrid adap-

tive splines on heavisine and simulated human event-related potentials (ERP) distributed

over individual scalp areas. We investigate the situations with different levels of additive

uncorrelated or spatio-temporal correlated noise added to these simulated signals. The use of

wavelet shrinkage and hybrid adaptive splines is motivated by the fact that the both methods



aredesignto dealwith local inhomogeneitiesin the signal.
The rest of this paper is organizedasfollows. First, in Section2 a basicdefinition of a

RKHSandformulationof the Representertheoremaregiven.In the next sectionthe kernel
PLSandlocally-basedkernelPLSregressionmodelsaredescribed.This sectionisclosedwith
a formulationof smoothingsplinesin RKHSand with a descriptionof the hybrid adaptive
splinesapproach.Section3 describestheconstructionof useddatasets. The experimental
resultsaregivenin Section4. Section5providesashortdiscussionandconcludesthe paper.

2 Methods

2.1 Basic formulation

Consider the regression problem

where {yi}in__l represent observations at equidistant design points {xi}in_i, a < zi < z2 <

< zr_ < _ _" [a, b] and Qi l-n - are errors not restricted to be uncorrelated or to be...... k J $=1

clrawn from a pre-specified pro1_ab-il_t-y-clistrlbuti0n, in t_is-pgper we-c6_i-der n6fi=pgrgme_fic

_-tima_-iml of t%@ fiiii¢_i0i_ _7(.)-. --_T_-vv_assume -t-h-_t--9-(i )- i_ a _muu_ ,u=_u_ ii_ _ ,u_o_

space _/. To restrict our estimate of 9(.) in 7-{ to be a function with the desired smoothness

property we consider an estimate 0 to be obtained as

9(.) ----arg rain (Yi -- 9(xi)) 2 + _(g)
9E7-t

(2)

In this formulation _ is a positive number (regularization coefficient or constant) to control

the trade-off between approximating properties and the smoothness of g(.) imposed by the

penalty functional _(9). Further we will assume that ?-{ is a RKHS which provides a finite

dimensional solution of (2) in spite of the fact that (2) is defined over an infinite-dimensional

space. Kernel partial least squares regression and smoothing splines described below fall into

this framework.

A RKHS is uniquely defined by a positive definite kernel function K(x, y), i.e., a symmetric

function of two variables satisfying the Mercer theorem conditions (Mercer, 1909; Cristianini

& Shawe-Taylor, 2000). i The fact that for any such positive definite kernel there exists a

unique RKHS is well established by the Moore-Aronszjan theorem (Aronszajn, 1950). The

form K(x, y) has the following reproducing property

.................... f_(y)_= (f_),__K(x.,.y))_n _ Vf_E __7-[.__ .....

where (., .}n is the scalar product in _/. The function K is called a reproducing kernel for _/.

It follows from Mercer's theorem that each positive definite kernel K(z, y) defined on a

compact domain 2( x X can be written in the form

s

= s < oo (a)
i----1

iWe consider one-dimensional input space, however, the following theoretical results are equally valid for a

higher dimensional scenario.
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where {¢i(.)}is=l are the eigenfi.mctions of the integral operator FK : L2(X) _ L2(X)

(FKf)(x) ----/x K(x,y)f(y)dy Vf E L2(2()

and {Ai > O}_=z are the corresponding positive eigenvalues. The sequence {¢i(.)}/s=l creates

an orthonormal basis of 74 and we can express any function f E 74 as f(z) = _1 ai¢i(x)

for some ai E Tg. This allows us to define a scalar product in 74

s s s aibi

(f(x)'h(x))7t -- (Z ai¢i(x), Ebi¢i(x))?.t dej Z ,_i
i--i i=I i=t

and the norm
S 2

HfJf 
i=l Ai

Define the feature vector _(.) = (v_[¢1(.), x/_2¢2(.),..-, v/7-sCs(.)) T. Rewriting (3) in the
form

s

K(z, y) = = - .)
................ _-I- .......................................

it becomes clear that any kernel K(x, y) also corresponds to a canonical (Euclidean) dot

product in a possibly high-dimensional space )r where the input data are mapped by

_5: A' --+ 5r

x

The space _ is usually denoted as a feature space and {{v/_¢i(z)}si=l,x e X} as .feature

mappings. The number of basis functions ¢i(-) also defines the dimensionality of )r. It

is worth noting that we can also construct a RKHS and a corresponding feature space by

choosing a sequence of linearly independent functions (not necessarily orthogonal) {(i(x)}s=l

and positive numbers ai to define a series (in the case of S = cc absolutely and uniformly

convergent) K(x, y) = Zsi=l ai(i(x)(i(y).

Now we can return to the solution of (2) and consider a general case when a penalty

functional f_(g) is designed to not penalize some components of 74, i.e., there will be a subspace

of 74 of not penalized functions called the null space. Kimeldorf and Wahba (1971) have shown

that in this case the solution of (2) leads to a general finite dimensional form also known as
the Representer theorem:

n !

#(x) = _ dig(xi, x) + _ ejvj(x) (5)
-7 .... _--1 ..... j=--1 ...................

• nwhere the functions {vj(.)}}= 1 span the null space of 74 and the coefficients {d/}i=l , {ej}}= 1

are given by the data. It is worth noting that in the case we consider a positive definite kernel

K and the functional f2(g ) = llgll_ there is an empty null space and we have the solution

9(x) = _n=l ciK(zi- , x) also known as regularization network (Girosi, Jones, & Poggio, 1995).

The Representer theorem also provides a very effective way to connect regularization networks,

smoothing splines and recently highly developed methodology of SVM for regression (Vapnik,

1998; Cristianini £: Shawe-Taylor, 2000; SchSlkopf & Smola, 2002). The theory of SVM also

motivated our construction of kernel PLS regression technique which we describe in the next
subsection.
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2.2 Kernel Partial Least Squares Regression

PLS Regressionbelongsto the classof regularizedregressiontechniques.The coreof the
techniqueis the PLSmethodwhichcreatesorthogonalcomponentsby usingtheexistingcor-
relationsbetweeninput (explanatory)variablesandcorrespondingoutputswhilealso trying

to keep most of the variance of both, input and output data spaces (Frank & Friedman, 1993).

For a moment we consider a general setting of linear PLS regression model where x E 7_N

denotes an N-dimensional vector of input variables and similarly we consider y E %M denotes

a vector of output variables. PLS decomposes the (n x N) matrix of zero-mean explanatory

variables X and the (n × 7_f) matrix of zero-mean outputs Y into the form

X = TP r + E

Y = UQ T + F

where the T, U are (n x p) matrices of the extracted p orthogonal components (scores, latent

variables), the (N × p) matrix P and the (M × p) matrix Q represent matrices of loadings

and the (n × N) matrix E and the (n x M) matrix F are the ma_rbes of residuals. We further
assume that the X-scores variables _={t_i_=l are good predictors of Y. We also assume a linear

..... in]-]_ _I_i6_ b_w-_n-t-_h-_-,_f-V_n-d u-, t-hat is, ..............

U=TB+H

where B is the (p x p) diagonal matrix and H denotes the matrix of residuals. In this case,

we can rewrite the decomposition of the Y matrix as

Y = uq T+ F = (TB + H)Q r+ F = TBQ r+ (HQ r+ F)

which defines the considered linear PLS recession model

Y = TC T + F*

where C r --- B QT now denotes the (p × M) matrix of regression coefficients and F* = HQT+F
is the Y-residual matrix.

Consider now again N = 1, that is z E T_, and assume a nonlinear transformation of x

into a feature space 9% Using the straightforward connection between a RKHS and jr we

have extended the linear PLS regression model into its nonlinear (kernel) form (Rosipal &

Trejo, 2001). Effectively this extension represents the construction of linear PLS model in jr.

Denote • the (n x S) matrix of mapped input data _5(x) into an S-dimensional feature space

....... jr_.__Instead of explicit mapping_of the data we can use property_(4) and__write .... :......

(I)(I _T = K

where K represents the (n x n) kernel Gram matrix of the cross dot products between all

input data points {_(x)}_=l, i.e., Kij = K(xi, xj) where K(., .) is a selected kernel function.

At the beginning of the section we assumed a zero-mean regression model. To centralize the

mapped data in a feature space jr we can simpIy apply the following procedure (SchSlkopf,

Smola, & M/iller, 1998; Wu, Massarat, & de Jong, 1997)

K +- (I !I_I_)K(I 1 T__ __ --lnln)
7% n



where I is an n-dimensional identity matrix and In represent the (n x 1) vector with elements

equal to one. The PLS method which in its classical form is based on the nonlinear iterative

partial least squares (NIPALS) algorithm finds weight vectors a, b such that

[coy(t, u)] 2 = [cov(r_a, Yb)] 2 = maXlrF=]sl=l[COv(_r , Ys)] 2

where coy(t, u) = tTu/n denotes the sample covariance between the two score vectors (com-

ponents). However, it can be shown (Hhskludsson, 1988; Manne, 1987; Rgnnar et al., 1994)

that we can directly estimate the score vector t as first eigenvector of the following eigenvalue

prob!em 2

KyyTt = At (6)

u = YYTt (7)

After the extraction of new scores vectors t, u the matrices K and L de__fyyT are deflated.

:The de_ation of these matrices takes the form (Rosipal & Trejo, 200I)

-- K _ (I - f_T)K(/ _T) ,- g +- (I --_ ,,-T-Vr-4-T.... **T_ ....

This deflation is based on the fact that we decompose the cI, matrix as @ +-- ¢I, - tp r =

,I, - ttr_I,, where p is the vector of loadings corresponding to the extracted component t.

Similarly for the Y matrix we can write Y +-- Y - tc T = Y - ttTy.

Finally, taking into account normalized scores t we define the estimate of the PLS regres-

sion model in )r as (Rosipal & Trejo, 2001)

_f = KU(TTKU)-ITTy = TTTy (8)

It is worth noting that different scalings of the individual Y-score vectors P{ui}i= 1 do not

influence this estimate. Denote d m = U(TTKU)-ITTY TM , m = 1,..., M where the (n x 1)

vector ym represents the m-th output variable. Then we can rewrite the solution of the

kernel PLS regression (8) for the m-th output variable as

O'n(x, d m) = _ d_iK(x, xi)
i=1

which agrees with the solution of the regularized formulation of regression (2) given by the

Representer theorem (5). Using equation (8) we may also interpret the kernel PLS model as

........ a. linear- regression--model of- the _form ...............................................

P

9_(z, c"_) = cFtl(z) + cpt:(z) +... + c;tp(z) = _ c_t_(z) (9)
i=1

where {ti(x)}P=z are the projections of the data point x onto the extracted p components and

c rn = TTY m is the vector of weights for the m-th regression model.
t pAlthough we define the scores { i}i=l to be vectors in an S-dimensional feature space )v

we may equally represent the scores to be functions of the original input data x. Thus, the

:In Rosipal and Trejo (2001) we have also proposed the nonlinear (kernel) modification of the classical

NIPALS algorithm.

The Y-scores u are then estimated as
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Figure I: Smoothing of noisy g(x) = 4.26(e -_ - 4e -2x + 3e -3z) function. Comparison of the kernel

PLS (KPLS) regression models using different numbers of components. Dotted line - KPLS with the

first component (describing 64.0% of variance in input space and 66.3% variance in output space).

Dash-dotted line - KPLS with the first four components (describing 99.7% of variance in input space

and 77.9% variance in output space). Dotted line - KPLS with the first eight components (describing

almost 100% of variance in input space and 86.7% variance in output space). The clean function is

shown solid line. A noisy signal generated by adding white Gaussian noise with standard deviation

equal to 0.2 is represented by dots.

proposed kernel PLS regression technique can be seen as a method of sequential construction

of a basis of orthogonal functions {ti(x)}_= I which are evaluated at the discretized locations

{xi}in__l. It is important to note that the scores are sequentially extracted such that they

describe overall variance in the input data space and more interestingly also describe the

overall variance of the observed output data samples. In Fig.l we demonstrate this fact on

exampletal_en fr6m-W£hb-a (1990)-.- We c-oin!6_tetlie-functidfi g(_) -- 4.26(e -x = 4e -2_ +3e -3x)

....... at-n-=--i01-equally spaced data points xi in the-interval 60i 3.25) and_add independently,

identically distributed noise samples ei generated according to Af(0, 0.04).

This example suggest that to more precisely model the first negative part of the generated

g(.) function we need to use components which generally reflect higher frequency parts of the

investigated signal (see also Fig. 4). On contrary this may potentially lead to lowering the

accuracy of our estimate over "smoother" parts of the signal. In our case second positive

part of the g(.) function. However, in many practical situations we may observe data seg-

ments where the observed function changes dramatically its curvature or even more we may

have prior information about the approximate locations where the investigated function g(.)

changes its curvature. In the next subsection we describe the construction of locally-based



kernelPLS regressionmodels which incorporatethisinformation.

2.3 Locally-Based Kernel Partial Least Squares Regression

To start this section we first demonstrate how the locally-based approach to kernel PLS

described below may improve our estimate on the previous example. Consider that to model

the first part of the generated function g(.) we use the data in the range (0, 1.5) and remaining

data will be used to model second part of the function. To avoid discontinuities on the common

edge of these two models we will introduce a form of soft clustering, i.e., to construct both

models we use all available d_ _ ..... s, however, w_ ;-_od-ce different weighting of individual

data points. The used weighting functions are depicted at the top of Fig. 2. We may ot_serve a

smoother estimate over the second part of the generated g(.) function using this locally-based

PLS approach in comparison to the results obtained with the global kernel PLS regression.

Both estimates over the first part of the function provides comparable results. However, in

the case of locally-based kernel PLS recession we used only four components extracted in

each locally-based kernel PLS model in comparison to eight components (selected based on

minimum mean square error on clean signal) used in the global kernel PLS model. The overall

m ea_n squared error in the case of locally-based kernel PLS regression decreased by a factor

of two, as compared to the global PLS regression.

Now, we provide a more rigorous description of the method. First, we consider the soft

or hard clustering of the input data and their associated outputs. We introduce a weighting

function r(¢) which reflects importance of the point x in a kernel PLS model. The points

having very small or zero values of the function r(.) will effectively be excluded from the

construction of orthogonal PLS basis (PLS component 's extraction) for a regression model

and vice-versa. The weighting functions are defined is such a way that the overall PLS model is

decomposed into several local sub-models where local orthogonal PLS bases are constructed. 3

The final model is then based on a composition of the individual locally-based kernel PLS

models.

Let the (n × 1) vector r represent the values of the weighting function r(.) at the training

data points {z_}i%l. The centralization of the (n x S) matrix of the mapped data vector

is then given as

• _ = Rd(¢ - In rTo)
7"s

where r_ = _=1 ri, Rd is (r_ × n) diagonal matrix with elements on diagonal equal to ri, I and

In is the identity matrix and vector of ones as defined in the previous section. This in fact

represents weighted centralization of the data given by the weight vector r. Consequently,
...... the.centralized Gram matrix will ha.ve th_e form .................

K_ = @_'I_T = Rd(I- lnr-----_T)K(I- I'_r-----_T)TRd
r s rs

Similarly, we do weighted centralization of the output data

Yr -- Rd(Y- I_ rT_)Y
rs

3This is analogous to the strategy used to construct the mixture of probabilistic principal components

analyzers (Tipping & Bishop, 1999) where the function r(.) represents a posterior responsibilities for generating

data points x.
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Figure 2: Comparison Of the kernelPLS (KPLS) and locally-basedkernelPLS (IKPLS) regression

models on noisy function describedin Fig. i. Dashed line- IKPLS with the firstfour components

in each model, upper dashed and dash-dotted linesrepresent the used weighting functions. Mean

squared error(MSE) on cleanfunction was equal to 1.9e-_. Dotted line- KPLS with the firsteight

components. MSE on cleanfunctionwas equal _to4.3e-3.The_clean fun£ti0n_isshovfnsol_id line.Noisy

signalgenerated by adding white Gaussian noisewith standard deviationequal to 0.2 isrepresented
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Consider that we define Z clusters based on which Z locally-based kernel PLS models are

constructed. Define centralized Gram matrix K_ constructed using the weight function rZ(.)
def z z T

associated with the z-th cluster. Similarly define matrix L z = Yr (Y_) • Following (6) and

(7) the scores t z, u _ of the z-th kernel PLS model are then given by solving the eigenvalue

problem
z z z Azt _KrLrt :

and by

u z : LrZtz

b_After each step we have to deflate Krz and L z matrices in the same way as described in ,_A

previous section. Denoting by T z _-_ rTz _ho m,_ic, es with columns consisting from the

extracted t-', u z scores the kernel PLS regression estimate for the z-th cluster is given as

Y_ = T"(TZ)Ty z

To express this estimate in the original not centralized variables we can write

?z R21 ¢ +
............... r_sz ...............

where r_ is the sum of the elements of the weighting vector r _ defined for the z-th cluster by

the weight function r_(.). To be consistent with our previous notation we denote by

Om(xi)z _f (_z)m ;i = l,...,n ;m= l,...,M ;z = l,...,Z

the locally-based kernel PLS estimate for the z-th duster for the m-the output variable at

the data point xi.
The final locally-based kernel PLS regression model consists of the weighted summation

of Z individual local kernel PLS regression estimates. This estimate for the input point xi is

given as
Z Z

om(2ci)= _-_7"[_m(Zi)z/S7 "[ ;/= 1,...,_ ;m = 1,...,k[
z----I z=l

where {r_}_=Iare the elements ofthe weightingvectorrz.

Finally,letus make severalcomments on the proposed locally-basedkernelPLS method-

ology:

a) First we have to stress that we defined the weighting function r(.) based on our prior

knowledge, visual inspection of the noisy data, detection of the segments with significant

change of the ctii_atu?@, etc. The obvi0u-s "ciuesti0n which may occur-is how the segmentation

....... (clust-ering)-oftheinput-d-ata-wil-l-l_e _tr-ansformed': into-the clustering_of_the_dataJ_.a.feature ......

space .7. This is an important issue due to the fact that we consider local PLS in )r, not

in the original input space. We may believe that we can invoke good clustering in a feature

space ._ if the nonlinear mapping to _" will be smooth and will preserve topological property

of the original input data. The Euclidian distance between two points in _ is given as

If we consider a Gaussian kernel function f_(xi,xj) = exp (-_) we may write

[[ff(xi) - ff2(xj)[[ 2 = 2 - 2exp( Ilz - z I12)
h

10
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Figure 3: Dependence of the Euclidian distances between the mapped data points on the input space

distances. Three curves represent the cases with different widths (A) of the Gaussian kernel used.

1i



and we can plot this distance as the function of the Euclidian distance between the input

points IIxi - :rjn and the width of Gaussian kernel h (Fig. 3).

This plot suggest that using a wider Oaussian kernel function we can not successfully

localize very small segments of input data. Data corresponding to small distances in input

space will be "flocked" together in _. In opposite for a smaller width of the Oaussian

kernel function the input data with greater distances will be too %pread" in 5c and intended

localization may be lost. The graphs suggest that for the width of the Oaussian kernel equal

to 0.6 (this value have been used in the experiments described in the Section 4) segmentation

of the input data with distances greater then 0.I and less then 1.4 should result in appropriate

data clustering in 9r.

b) As we might already observe the (local!y-based) kernel PLS method iteratively extracts

orthogonal components describing overall variance of the input as well as output data. This

effectively creates a sequence of orthogonal functions with increasing "complexity". Here we

define the complexity in the sense that the first kernel PLS scores will pick up the trend of

the output function and will represent rather smooth slowly-varying functions. In contrast

higher scores will represent higher frequency components of the output signal or noise. We

note that this hypothesis in geli_fal _vill depend on the selected kernel function. However, in

o_-set-t-i-ng we ha_'e used the Gaussian kernel function which has a nice smoothing property

based on the fact that higher frequency components are suppressed (Girosi, Jones, & Poggio,

1995; Schblkopf i: Smola, 2002). We may hypothesize that the above argument will be true

for such a class of "smooth" kernel functions. In Fig. 4 we demonstrate this argument using

first nine score functions extracted in previous example where we have used Gaussian kernel

with a width h equal to 1.8. 4

c) Described (local) kernel PLS regression is well defined for univariate as well as multivari-

ate outputs scenario. In the case of multivariate outputs this approach opens the possibility

for spatio-temporal modeling of a collection of signal of interest. This can be useful in the case

that observed signals represent different time realizations or measurements at different spatial

locations. Or also in the situations where both, different time and spatial measurements of

the same or similar signals of interest g(.) are collected. We simply arrange the output matrix

Y to be the matrix with columns representing these different temporal or spatial signal(s) of

interest. The extracted components will represent common features of these different real-

izations. Finally, we would like to note that the "kernel trick" (4) allows us to easily extend

the methodology to the case of multidimensional inputs and also for the case of not equally

sampled data.

d) As we noticed in the previous example the locally-based kernel PLS approach provided

(in terms of MSE) a better estimate of the generated function g(.). This was achieved with

_ _ smaller_number of four different cQ_ponents used in ind.iv.idua! local ker__nel PLS models. _On

several different data sets we experimentally observed that to properly smooth the noisy data

over the segments with low curvature of 9(-) individual locally-based kernel PLS needed less

then 8-i0 components. In many case less than five components provided best results. This

was observed on different smoothing problems described in the paper and other non-published

data sets as well. However, results in Rosipal and Trejo (2001) indicate that if the regression

task with smaller level of output noise is of interest this number may increase. In the current

4We just remind the reader that the kernel PCA decomposition without any connection to the output
function would lead to the extraction of the components similar to a trigonometric series expansion for a

Gaussian kernel (Schblkopf & Smola, 2002; RosipaI & Trejo, 2001).
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paper we provideresultswhere the maximum number of components was restrictedto be the

firstfourcomponents. The finalnumber p _<4 of components was selectedusing the model

selection criterion described in the next section.

2.3.1 Model Selection

W'e have already noticed that kernel PLS extracts components with increasing complexity in

the sense of remark b) in the previous section. This construction of a sequence of functions

with increasing complexity also motivates our use of the idea of Vapnik's structural risk

minimization approach for model selection, i.e., in our case this is the determination of the

number of components p used in each locally-based kernel PLS regression model. Vapnik has

shown that for regression problems with a squared loss function the following bound on an

estimate of in-sample prediction error (PE) holds with probability 1 - r/ (Vapnik, 1998)

i n_ (_/h(ln(')+l)-lnr]) -1.PE < - _-_.(Yi - g(xi)) 2 1 - c (10)
-- n n

+

where h is VC dimension of the set of approximating functions, c is a constant reflecting the
_ah_ of the ioss c... ,- _ _'__:_..._:_._,, theoretica-} .... +....._-and

(z)+ = x i/x> O
0 otherwise

The first term on right hand side of (10) represents empirical error while the second term

is often called penalization/actor, which for increasing complexity of the regression model

inflates empirical error.

For practical use it is difficult to compute the exact VC dimension for an arbitrary set of

functions, moreover, it can be infinite for some classes of functions. However, constructing a

regression function to be a linear combination of a finite (fixed) set of basis functions, ordered

based on the increasing complexity, Cherkassky et. al. (1999) and Cherkassky and Shao

(2001) suggested to take the following heuristic penalization factor

( t
i- -vlnv+ 2hi+

where v = p/n with p representing VC dimension of the considered regression function (9)

with p terms. To complete this replacement Cherkassky at. at. (1999) and Cherkassky and

Shao (2001) set r/ = 1/v/-n and they have considered parameters a, c to be equal one. 5 In

comparison with other model selection criteria, it was demonstrated that the new model

selection criterion motivated b3)-tiae structural risk minimization theory and VC-dihi@iis-iihn-

may provide comparable or better results (Cherkassky et al., 1999; Cherkassky g_ Shao, 2001).

2.4 Univariate Polynomial Smoothing Splines

We again consider model (1) and we further assume that function g(.) belongs to the Sobolev

Hilbert space

w2 [0,1J= {f: f(")abs, cont.,V= 1,..., c- 1; <

5For more detail description of this reasoning see Cherkassky et al. (1999) and Cherkassky and Shao (2001).
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whichdeterminesthesmoothnesspropertiesofg(.). Without lack of generality we consider in-

put data to be in the interval [0, I]. Wahba (1990) has shown that the same general framework

for the solution of regularized functional (2) in a RKHS can also be applied for smoothing

splines. More precisely, the RKHS is a Sobolev Eilbert space and the penalty functional Q(9)

is the semi-norm of the space. Thus the smoothing splines are the solution of regularized
functional

9(z) : arg min I1

and they have the following proprieties

_(f(_)(z)]
i----i

{ _c-1 forz_ [0, zi]

__2_-I for z 6 [x_.,zi+l]
9(x)= _c-1 forxe[x_,l]

C 2_-2 z e [o, I]

(11)

where 7rk are polynomials of degree k and C k represents functions of k continuous derivatives.

The_ smoothness of the solution is controlled through the parameter 7 > 0,-In-this paper

• .we_consider c = 2 in which case (11) has the_unique_ solutio_n call_ed n atur_a_l.cubic svl__nes.

Adapting theory of RKHS and the Representer theorem we can write the solution of (11) in
the form

r,

_(x) = blvl(x)÷ b2v2(x)÷ _ ciI((x,xi) (12)
i----1

where vt(x) = 1, v2(z) = x - 1/2 and

To estimate the vectors of unknown coefficients b = (bl, b2)T, c = (cl, c2,..., c_) r we need to

solve the following optimization problem

argmin f I''y - (Tb + Kc)']2 + 7cTKc]b,c

where y = (Yl,..., Yn) T, K is the (nxn) Gram matrix with (i, j)-th entry to be equal K(xi, xj)

of (13) and T is the (n x 2) matrix with (i,j)-th entry vj(xi). It can can be further shown

(Wahba, 1990; Green & Silverman, 1994; Hastie, Tibshirani, & Friedman, 2001) that we can

express this solution in the form ....

............................................ g -_s.__._y........................

where g denotes (n x 1) vector of fitted values O(xi) at the training input data points {zi}p=z

and S7 is the smoother matrix which depends only on {xi}in=l and %

In the case of independent, identically normally distributed errors ei the minimum of

generalized cross-validation (GCV) function was proved to provide a good estimate for 7

(Wahba, 1990)

traceiST)/n

Trace of the smoother matrix S7 defines effective degrees of freedom dr7 = trace(ST) (Hastie,

Tibshirani, & Friedman, 2001). Having defined the dr7 of the smoothing spline we may
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numericallyderivethe corresponding7 parameter. This parametrization may provide us a

more intuitive comparison of different regularization of smoothing splines in practice, e.g., in

the case we would like to visually compare smoothness of the fit.

2.4.1 Hybrid Adaptive Splines

To deat with a possible local inhomogeneity in g(.) function Luo and Wahba (1997) proposed

new methodology arising from the solution (12). The methodology is based on approximation

of the Gram matrix K by a set of basis functions which represent different columns of K. The

motivation to do this is based on the assumption that the regions of local inhomogeneity or

data dense regions in the case of unequal sampling should be modeled with a higher number of

basis functions in comparison to smooth or more uniformly sampled regions. The individual

columns of K are sequentially added to the model based on their reduction in the residual

sum of squares. The size of the model, i.e., the number of columns added, is determined using

the following modified generalized cross-validation (mGCV) criterion

1 " y,:- -2
mGCV(k): - (2+ (k J

where IDF is the inflated degrees of freedom parameter (Luo _: Wahba, 1997). Taking the k
which minimizes mGCV the final HAS model will have the form

k

= b .l(x) + b2.2(x) +
l=1

where index il represents the selected columns of K. This methodology is close in its strategy
of selection of a subset of basis functions defined by the columns of the Gram matrix K

to the different approximations of regularization networks (Haykin, 1999; Chen, Cowan, &

Grant, 1991; Orr, 1995; Platt, 1991) and also to the recently developed relevance vector

machines (Tipping, 2001). As was pointed out by the authors if the signal does not have

much local inhomogeneity smoothing splines with a global smoothing parameter should in

general perform better than the HAS approximation. To find the vectors of coefficient b =

(bl,b2)T,c = (cl, c2,... ,ck) T the authors suggest to used penalized regression due to the

possible higher correlations among the selected columns of K. This may numerically stabilize

the least squares estimate of the regression coefficients and decrease their variance, however, it

will also lead to the bias in the estimate and also to the potential further smoothing. Although

this may provide a regression model with better generalization properties due to the lower

variance of the regression coefficients, our goal here is to smooth measured signals and we do

..... ii6t-haVe a Zeksoti to use this further penalization. We have used unpenalized ordinary least

sqflares approach with pseudo-inverse to compute desired regression coefficients b, c.

3 Data Construction

3.1 Heavisine function

To examine the performance of locally-b_ed kernel PLS method we selected a standard

example of de-noising heavisine function taken from Donoho and Johnstone (1995)

g(x) = 4sin(4_x) - sign(x - 0.3) - sign(0.72 - x)
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The function of a period one has two jumps at xi = 0.3 and x2 = 0.72. The function scaled

into interval [-i, I] is depicted in Fig. 8b. We computed heavisine function on five sets of

equally spaced data points with number of samples 124, 256, 512, 1024 and 2048, respectively.

We added Gaussian noise of two levels such that signal-to-noise ratio (SNR) was IdB and

5dB, respectively. 6 We created 50 different replicates of the noisy heavisine function for each

set of different lengths and noise levels.

3.2 Event Related Potentials

We simulated brain event related potentials (ERP) and ongoing electroencephalogram (EEG)

activity using the dipole simulator program of BESA software package. T In this scenario we

consider EEG to represent spatially and temporally correlated noise added to the ERP. This

simulation provides a reasonable but simplified model of real-world ERP measurements.

The sources of generated ERP were represented by five dipoles with different spatial

location and orientation. The placement of the dipoles with their sample activation function

is presented in Fig. 5. The dipoles that contribute to the ERP produce a composite waveform

with four prominent peaks: N! (negat-ive peak-with-the-latencies in the range 300-1-40 ms),

...... P2__(positive peak w i_th_the .laterlcies in the range 200-240 ms), N2 (negative peak with the .......

latencies in the range 250-300 ms) and P3 (positive peak with the latency in the range 340-400

ms) as observed on Cz electrode. These four peaks correspond to well known components of

human auditory or visual ERP (Hillyard &: Kutas, 1983; Naatanen _z Picton, 1987; Naatanen

& Picton, 1986; Parasuraman £: Beatty, 1980; Picton et al., 1974). We generated 20 different

realizations of ERP on scalp by random changing of the latency of peaks and amplitudes of the

individual activation functions. These dipoles were used to generate a full scalp topography

containing 19 data channels located based on International 10-20 System (Jasper, 1958).

Average of the signal at mastoid electrodes A1 and A2 was used as reference signal for other

electrodes. The sample of ERP for one of 20 different trials is also shown in Fig. 5. Individual

data epochs were designed to be 800 ms long starting I00 ms before the event. We have used

a sampling rate equal to 160Hz, 320Hz and 640Hz resulting into 128,256 and 512 data points

long epochs. In the next step coherent noise modeling of ongoing EEG activity was added to

the generated ERP. The noise data waveforms are summed over the contributions from 200

different sources (dipoles) with random locations and orientations. The noise is generated

in a way that there is a high correlation between signal amplitudes from close electrodes.

The frequency characteristic reflects characteristics of EEG spectra (I/_) with added

dominant c_-band frequency about 10Hz. The weighting of the _-band in comparison to the

other frequencies was changed in each realization but the proportion of the Q-band stays in

the range of 40% - 60%. Two different levels of the amplitudes of the noise signal waveforms

........ were set.- Ti_s-createa two sets of nois3)-EP_P-Xv-i%h-k-vdF_g@d-SNR-oVe-r-the el@Etrod6s £hd

trials to be equal 5dB and -l.5dB, respectively. The same sampling rates as described above

were used. Finally, temporally and spatially uneorrelated Oaussian noise was added to the

generated data to represent measurement noise and other non-biological sources. For the first

set of the data the zero-mean noise with standard deviation equal to 0.5 was generated. In the

second case standard deviation of the white Gaussian noise was increased to i. The noise was

generated for each channel individually and referenced to average of A1 and A2 electrodes.

n 2
6In all our experiments we define SNR to be 101ogio _, where S = _-_'-_=lg(x_) is a _sum of squared

amplitudes of clean signal and N = _=_ e_ is the sum of squared amplitudes of noise, respectively.
7http ://www. besa. de
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This resulted in final averaged SNR over electrodes and trials to be equal 1.3dB and -4.6dB,

respectively.
In our second set of noise ERP we added uncorrelated zero-mean Gaussian noise with

standard deviation equal to 0.5, 1 and 2, respectively, to the clean ERP. This represents

averaged SNR over the electrodes and trials to be equal 4.5dB, -l.6dB and -7.5dB.

4 Experiments

To compare our results we have used two measures of goodness of fit to the clean signal g(.).

Normalized root mean squares error (NRMSE) defined as

n X

-_--_-- -- n/_ 1NRMSE= vEi=i(g(zi)-_ , 9(z)=-.= g(zi)

The second measure we have used is the correlation coefficient (CC) between de-noised signal

_(:) and clean generated sign_al g(.) Although both measures can provide good intuition about

the goodness of fit and similarity of the shapes bet-ween our es{[ma{e of the sig-nal Of interest
of v .e =_.gg-d--t-h_-gig_l ._=_e ........ a.... _ -_....... -_.... ._..... :-. -_÷o_ +4. - _h _+ m_,,s we.-_av_,_e**, _hey ,_ne-ct mam,_ _er_,l gtou_t ctxa, a ..... so._s ......

also visually inspected smoothness of the individual estimates 9(-) and goodness of fit over

the parts of spatial inhomogeneities in the signal 9(.)-

4.1 Heavisine function

We compared the proposed locally-based kernel PLS (1KPLS) method with existing smoothing

splines (SS), hybrid adaptive splines (HAS) and Wavelet Shrinkage (WS) methods.

In the case of 1KPLS we used equally spaced data in the interval [-1, 1]. The theoretical

value of two times the variance of uniformly distributed data in [-1, 1] equals 0.6 and in all our

experiments with the Gaussian kernel function this motivates our choice of the width h to be

equal 0.6. Visual inspection of a sample of noisy heavisine function (Fig. 8a) suggests to set

the weighting function r(.) over four segments (intervals) ,9i =([-1,-0.5],[-0.5,0],[0,0.5J,[0.5,1]).

These segments reflect four "bumps" visible on the noisy function over which individual local

kernel PLS models are constructed. We set r(.) to be equal to 1 over the individual segments.

The segments are overlapped with exponentially decaying values in a way that it reaches

values close to zero in the middle of the neighborhood segment. In the second case we assume

that the approximate location of the local inhomogeneity close to the point 0.45 is known in

advance. We rearrange four segments to-be-82 =([-1,-0.5],[-0.5,0.4],[0.4,0.5],[0.5,1]) and set

_ _ tk__w_eigh_ting f_unction .r(.)__t_obe equal to.l_ _9v_e.r_t_h_e..indiyi.dual segme_n_ts: We h_aye us__e_d__t_he__

same decay of r(.) as in the first case to overlap the segments.
In our comparison we have investigated different WS methods as implemented in the

Matlab Wavelet Toolbox. s Comparing the results in the terms of NRMSE and CC on recovery
of the known clean heavisine function we examined different families of wavelets, different

number of wavelet decomposition levels and different threshold selection rules as implemented

in wden function of the Wavelet ToolbOx. The best results were achieved and are reported

using Daubechies 4 famil3; of Wavelets, heuristic SURE as threshold selection rule, threshold

rescaling using a single estimation of level noise based on the first-level of coefficients and soft

Shttp://_Tww.mathworks.com/
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Figure 5: Simulation ERP data. A:-Locationand orientation of dipoles. B: Topographical scalps

maps showing topography of each dipole C: Activation function of each dipole. D: The averaged (over

electrodes) noise amplitude spectrum and the weighting function of an sample of noise added to ERP.

The spectra simulate ongoing EEG activity with dominant a-band frequency to be 50% of the spectra.

E: Simulated ERP waveshapes on different electrodes (scalp locations).
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thresholding of details coefficients at level N- 1, where N is maximM number of decomposition

levels as defined by the number of data points used. These settings are in good agreements

with findings of Donoho and Johstone (1995).

The computation of SS was done using the penalized smoothing splints (pspline) package

as implemented in R software) We set the order of splints to correspond to natural cubic

splints. We observed a little difference between the use of GCV and ordinary CV criterion

for the selection of smoothing parameter 7. We report the results using GCV criterion. HAS

were implemented in Matlab based on the original paper of Luo and Wahba (1997). The

individual basis functions were added based on minimizing mGCV with IDF equal to 1.2.

In Fig. 6 and Fig. 7 a boxplot with lines at the lower quartile, median, and upper quartile

values and a whisker p!ot of the distribution of NRMSE over different runs corresponding to

the case of SNR equal to ldB is depicted. The triplets correspond to the results achieved

with the use of different number of samples. The first boxplot in a triplet is for IKPLS,

second for SS and third for WS. Fig. 6 represents results with $1 setting of segments in

1KPLS. We may see that SS provides the best results followed by 1KPLS. With increasing

number of samples the differences among the methods are decreasing. We have to note that

using more v_idely ov@-rla;pping segme-nts in the case of IKPLS improved results for the case

of--I-28 and 256 samples and provided -the-results almost identical to SS._In the case of smaller

number of samples individual LKPLS models are constructed using the segments of smaller

number of data points with higher weights. Thus, increasing the segments of influential data

points (slower decay of the tails of the weight function r(.)) will have tendency to provide

more global smooth estimate , however, it also leads to loosing the tendency to cope with

local inhomogeneities. The results achieved using the second set $2 of segments in the case

of IKPLS are depicted in Fig. 7. We may see improvement of IKPLS results for all number

of samples. For the higher number of samples (512,1024,2048) IKPLS provides slightly better

results in terms of median, upper and lower quartiles than SS ans WS. Again using slower

decay of the tails of the weight function r(.) provided comparable results to SS in the case of

of 128 and 256 samples used.

The comparison of the WS, SS and IKPLS methods for the case of SNR equal to 5dB

provided qualitatively the same results as described for SNR equal to ldB, that is, comparable

performance of SS and 1KPLS followed by slightly worse performance of WS. Intuitively, the

values of NRMSE using individual methods were decreased.

In terms of CC we also observed qualitatively the same results as described for NRMSE.

In the case of SNR equal to ldB the median of CC for 1KPLS and SS was in the range between

0.975 - 0.995 with smaller values starting for the case of smaller number of samples used.

Values of the median of CC for WS were for smaller number of samples used slightly smaller.

In the case _ofSNR equal to 5dB the ran_ge of median values of CC for 1KPLS an.d SS was

between 0.985 - 0.997 corresponding to the high "agreement of shapes" between estimates

_(.) and the clean heavisine function g(.).

In Fig. 8c we plotted an estimate of _(.) for which 1KPLS fit g(.) with NRMSE closest

to median. Estimate using the same data sample however second set of the segments $2 is

plotted in Fig. 8d. In Fig. 8e,f we have also plotted estimates of SS and WS with NRMSE

closest to this 1KPLS estimate. The visual inspection suggests that IKPLS with second set of

segments 82 provides the best fit to the clean heavisine function with clear detection of the

local inhomogeneity close to the point 0.45 and shows best overall smoothness of the estimate

9http://cran.r-project.org/
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in comparison to SS and WS.

We furthercompared the SS and HAS methods. Overallperformance in terms of median

NRMSE and CC ofHAS was worse incomparison to SS.

We visuallyinspectedall50 trialsinthe caseof 1024 samples and both SNR rates.In the

caseofSNR equalto 5dB (IdB) we couldvisuallyconfirmthe detectionoflocalinhomogeneity

closeto the point0.45in23 (16)casesforHAS, II (8)casesforSS, 30 (12)casesforWS and

44 (34)casesforIKPLS using $2 setofsegments. The overallsmoothness ofIKPLS and its

fitto the cleanheavisinesignalhas been evidentlyhigherin comparison to HAS and WS. In

terms ofmedian NRMSE, IKPLS providedimprovement of10.2% (5dB) and 15.5% (idB) in

comparison to HAS and 14.7% and 23.6_, respectively,in comparison to WS. In Fig. 9 we

plottedthe trialwith the value of NRMSE closestto the median NRMSE ofHAS. We may

see that HAS and IKPLS providesvisuallycomparable resultswhile SS failsto detectlocal

inhomogeneity closeto the point 0.45on thistrial.

Finally,the kernelPLS (KPLS) regressionapproach was used. In thiscasewe observed

that by fixingnumber of components to be in the range 8 - 15 we may achievecomparable

performance with other methods. This isdemonstrated in Fig. I0 where a boxplot over

the l_mvlo,_,Mc._ dl_,b'_*-:-*:^-..... for KPLS and !KPLS (u=i-g_.. both sets of segments) is depicted..

_ Although the.KPLS approach p_o_ided adequate smooth estimate of the desired hea_vjsi_n_e_

function, similar to SS, it fails to detect a local inhomogeneity in the function (Fig. 9f). We

have also observed that the VC-based model selection criterion described in subsection 2.3.1

has tendency to underestimate a number of selected components in the case of higher num-

ber of data points (512,1024,2048) and consequently KPLS recession resulted in decreased

accuracy. In the case of lower number of data points used (128,256) this model selection

criterion provided comparable or better results in comparison to the case where fixed number

of components was used. The maximum number of components in these cases was set to 12.

4.2 Event Related Potentials

In the case of 1KPLS we again used the equally spaced data in the interval [-1, 1] and the

width h of Gaussian kernel equal to 0.6. To set weighting function r(.) we created an average

of the first five ERP trials on Pz electrode to visually set the segments over which the IKPLS

regression was constructed. We also took into account existing knowledge about the shape of

real-world ERP (Hillyard & Kutas, 1983; Naatanen & Picton, 1987; Naatanen g_ Picton, 1986;

Parasuraman & Beatty, 1980; Picton et al., 1974) (see also Section 3.2). This motivates our

choice of three segments ([-1,-0.3],[-0.3,0.1],[0.1,1]). We set r(.) to be equal 1over individual

segments and then overlap the segments with exponentially decaying values of r(.) reaching

the values close to zero (less then 10e -5) on interval 0.4.

- --Ifl-the-cA_e of WS we h-ave-fised thr_gh-dldg _s_aleii bya l_,Tel-dep-_i_defit e-stirn-atio_ of the

noise level (Johnstone & Silverman, 1997). This provided better results in this case where

temporally and spatially correlated noise was added to ERP. It was already observed that in

the case of colored noise GCV or CV criteria fail to provide an appropriate estimate of the

smoothing parameter 7 in SS approach (Diggle & Hutchinson, 1989; Wang, 1998; Opsomer,

Wang, & "Fang, 2001). Although there exist several modifications of GCV in the case of

colored noise usually some a priori knowledge about the covariance matrix of the correlated

noise Or its parametric specifications is needed (Diggle & Hutchinson, 1989; Wang, 1998;

Opsomer, Wang, & Yang, 2001).

Signal averaging was also used to extract ERP embedded in noise. This approach was
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boxplots are computed on results from 50 different replicates of noisy hea4cisine function-($NR--IdB).
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proved to be quite useful due to the overlap of the ERP and noise spectra. Although the

assumption of over the time stationary, not-varying ERP justify this method, it may provide

a useful smooth estimate of ERP also in the case of slight variability among individual ERP

realizations. However, in this case the information about the amplitudes and latencies differ-

ences over individual trials will be smeared out. The estimate of the ERP at each electrode

was constructed to be the average of 20 different realizations of the ERP measured at the

electrode. This was taken to represent the same de-noised signal for all trials and NRMSE

and CC between this estimate and individual clean ERP realizations was then computed. We

have to stress that in contrast to the averaging approach other smoothing methods described

are single-triai oriented.

In the case of !KPLS we have also compared a univariate approach in which each electrode

represents single 1KPLS regression model with the approaches where spatial, temporal and

spatio-temporal setting of the multivariate outputs was used. In the spatial setting individual

columns are constructed using measurements at different electrodes while in temporal they

are represented by different time measurements at the same electrode. In spatio-temporal

setting We combine both approaches. We have to stress that this spatio-temporal information

is only used to extract common PLS components while regression models are consequently

.... buil.t-for--eac-h- elect-rode i-ndi-_4d-ual.l_,_ .This allows us .to obtained sev.eraLdifferent _estimates. for

a particular electrode by using 1KPLS models with different settings of the output matrix.

Finally we may create a final estimate at the electrode by combining these individual esti-

mates. We investigated different settings of local spatial distribution of the electrodes as well

as more global settings where the measurements from spatially more distributed electrodes

created the final multidimensional output matrix Y. The similar modification of short term

and long term temporal setting was investigated and mutually combined. We observed small

differences among the resuIts achieved over individual trials, however, in terms of averaged

NRMSE and CC over all trials the differences were small. In the next we report the results

where overall spatial information from all electrodes was used, that is, columns of the output

matrix are measurements at individual electrodes over one trial. A number of selected com-

ponents for the regression models corresponding to individual electrodes was set based on the

minimum of the VC-based model selection criterion for the particular model.

The median values of NRMSE computed over 20 different trials on each of 19 electrodes

for two levels of SNR used are plotted in Fig. 11 and 12. From this plot we may observe

that IKPLS provides consistently better results in comparison to SS and WS. Although these

results are worse than applying the signal averaging technique we may also observe that the

same technique of averaging applied to smoothed, de-noised estimates of IKPLS outperformed

averaging applied to the raw ERP. We may.observe that for a smaller level of noise the median

_of CC. is_higher _then .the m_cdia_n of CC using, r a_v _no!sy E RP .data averaging te_chnique over

some of the electrodes. This suggests that single trial IKPLS smoothing may better follow

latency and amplitude changes among individual ERP. realizations. In Fig. 13 we plotted an

example taken at C4 electrode which partially supports this assumption. We may see that

average taken over all 20 noisy ERP trials tend to by slightly shifted in the latency of the

second negative peak and lower in the amplitude of the first positive peak. It is important

to note that the results on some of the electrodes indicate median NRMSE greater than

one and also lower median correlation coefficient (CC < 0.8). This occurs on electrodes

with smaller SNR (frontal and temporal electrodes) and in these cases we cannot expect

appropriate reconstruction of clean ERP.

Further, we were interested to see if a proper selection of smoothness in the case of SS may
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Figure 11: Results on noisy event related potentials (ERP)-20 different trims were used. Averaged
SNR over the trims and electrodes was equal to 1.3dB and 512 samples were used. Comparison of

different nonparametric smoothing methods in terms of median normalized root mean squared error

(NRMSE) (upper graph ) and correlation coefficient (CC) (lower graph). In the upper graph the plots
-fr-0Tn--the- top to t]ae -botiom-rep_-e_ent_ s-mootlaingSplTnes-iS-S),- wavelet shrinl_ge (WS); 156_ll_¢-5£J_d

kernel PLS (1KPLS), averaged raw ERP (avgRaw), averaged smoothed curves as result of 1KPLS

(avglKPLS). The order of the plots is reversed for CC.
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Figure 12: Results on noisy event related potentials (ERP)-20 different trials were used. Averaged
SNR over the trials and electrodes was equal to -4.6dB and 512 samples were used. Comparison of

different nonparametric smoothing-methods-in terms of median normalized root mean squared error

(NRMSE) (upper graph) and correlation coefficient (CC) (lower graph). In the upper graph the plots
_o-m the-top {-o-t-he- Doit_m- rep_sen%smooth]-ng sp];nes- (-SS), -wav-el-et -shfink&g_ (WS)-:- 16_ll_:b-a_e-d -

kernel PLS (IKPLS), averaged raw ERP (avgRaw), averaged smoothed curves as result of IKPLS

(avglKPLS). The order of the plots is reversed for CC.
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Fi-_ure- i3" Example of smoothing a trialof ERP on C4 electrode,SNR--4.hdB-_-U-m-B-_o: samples

n = 512 a) left graph: solid line-clean ERP, dash-dotted line-noisy ERP b) right graph: dash-dotted

line-clean ERP, dashed line-smoothed noisy ERP using locally-based kernel PLS, solid line-average
of 20 different noisy ERP trials on C4 electrode.

provide results which would be better in comparison to that achieved with 1KPLS. Because

the pspline software package allows us to define df._, that is, degrees of freedom parameter,

we may vary this parameter and investigate performance of SS. We have to stress that this is

only possible due to the fact that we know the clean ERP signals. We observed that changing

df in the range of 8 - 16 provided very comparable results with IKPLS in terms of median

NRMSE and CC (Fig. 14).

Using the KPLS approach we have observed the values of median NRMSE and CC to

be between the values achieved with WS and 1KPLS (see Fig. 11,12). The VC-based model

selection criterion using the maximum number of components equal to 12 was used. Similar to

IKPLS overall spatial information from all electrodes was used to extract the components and

a final number of selected components was again set based on the minimum of the VC-based

model selection criterion for the particular model.

In the case where only white Gaussian noise was added to the generated ERP we observed

comparable results of SS and IKPLS in terms 01" NRMSE and CCI closely followed by the

F_i_LS. W-San-d-H_kS -_ie[hb-d_.--A]_tfofig-5-t his- exlh_YiK_iit-El-_t tih-_ fti_-t-h_ ]_ti-fied-a-dequacy --

of the use of the 1KPLS and KPLS methods on wider set of smooth ERP signals, it has only

low practical value due to the fact that in real measurements of ERP we can not assume

spatially and temporally uncorrelated noise superimposed to the ERP waves. In terms of

median NRMSE and CC we observed better performance of SS method in comparison to

HAS.

Finally we note that all reported results were consistent for different numbers of samples

used, i.e., 128, 256 and 512, respectively.

3O



2 I i i I I I r J i I J I I I l I I I
A

-i .............. _ ...... . ........

Fz Cz Pz F3 C3 P3 F4 C4 P4 T7 -I-8 P7 P8 F7 F8 Q1 ©2 Fpl Fp2

1 I I I f _ t I I I I I I t I I i I t

I

0.9__ _ .__. __\ _._-__

0.8 _.

',_.'_.< \. _. -
o°7_- /_"L,/_._ / _ .- "

0.4_- I r _ r I _\'/
03 I f I I I I I I i 1 P

Fz Cz Pz F3 C3 P3 t=4 C4 P4 T7 -F8 P7 P8 F7 F8 01 02 Fpl Fp2

Figure 14: Results on noisy event related potentials (ERP)-20 different trials were used. Averaged

SNR over the trials and electrodes was equal to -4.6dB and 512 samples were used. Comparison of

smoothing splines (df,_ = 14) (dashldotted lii_dS)-and locally/based kernel PLS (s01id lines) in terms
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and correlation coefficient (CC) (lower graph).
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5 Discussion and Conclusion

We have described a new smoothing technique based on kernel PLS regression. On two

different data sets we have shown that the proposed methodology may provide compara-

ble or better results when compared with the existing state-of-the-art,namely smoothing

splines,hybrid adaptive splines and wavelet shrinkage techniques. By expressing smoothing

splines in RKHS we could directly see existing connections with our kernel PLS regression

method. These close connections between smoothing splinesand recently elaborated methods

of regularizationnetworks and support vector machines, which also motivated our kernel PLS

methodology, was already pointed out in Smola, Sch61kopf, and Miiller(1998), Girosi (1998)_

Wahba (1999) and Evgeniou, Pontil,and Poggio (2000). Recent interestin the use and de-

velopment of differenttypes of kernel functions in kernel-based learning gives hope to extend

the methodology of nonparametric curve fittingdiscussed in thispaper. An example of this

may be the recent theoretical work on statisticalasymptotic properties of Gaussian and a

periodic Gaussian kernels (Lin _: Brown, 2002). In agreement with theoretical results,the

authors have shown that periodic Oaussian kernel may provide better results in the case of

very smooth functions. In the case of functions of moderate smoothness, comparable results

. with_periodic cubic splines were a_chieved.

We also proposed a locally-based kernel PLS regression model. This method was designed --

to incorporate prior knowledge (or knowledge which may be derived from the experimental

data) about the approximate location of changes in signal curvature, discontinuities or other

spatial inhomogeneities occurring in the signal. The motivation to incorporate the existing

knowledge about the signal of interest came from the problem of smoothing ERP signals

corrupted by high levels of noise. Knowledge about the approximate shape of ERP is known

from many psychological observations, however, the exact shape of ERP varies from trial to

trial. The good results on the ERP data set justify usefulness of the approach. However,

where there is large variation in the latency of ERP components, additional operations may

be needed to determine the proper intervals and weighting functions for locally-based kernel

PLS. Our results also suggest that this method tends to be superior to the global kernel PLS

approach on this data set. The results also encourage us to considering the (locally-based)

kernel PLS methodology on other problems of de-noising biological data, e.g., removal of eye-

blinks from EEG data. On the heavisine function corrupted with high levels of white Gaussian

noise we observed that, by including the knowledge about approximate location of a local

inhomogeneity, locally-based KPLS provided better results in comparison to hybrid adaptive

splines and wavelet shrinkage methods--the methods which are also design to deal with local

inhomogeneities in the signal. This superiority was observed in terms of the visual detection

0_f local !nhomoge_neity and also in the terms of averaged NRMSE and CC over individual

trials. Finally, we have to note that the concep-t of i0calization may ]_ealso-po%entiaily

implemented into the other kernel-based regression models, e.g., support vector regression,

kernel principal components regression or kernel ridge regression (Vapnik, 1998; Cristianini

_: Shawe-Taylor, 2000; SchSlkopf _ Smola, 2002; Rosipal, Girolami, & Trejo, 2000; Rosipal

et al., 2001; Saunders, Gammerman, _: _vbvk, 1998).

One of the main issues of existing nonparametric regression techniques is appropriate

selection of regularization (smoothing parameters). On data sets with uncorrelated Gaussian

noise added to clean signals, we observed a good performance of smoothing splines using

GCV criterion to set a level of regularization. However, in the case of colored noise this

criterion without a priori knowledge or an appropriate estimate of the variance-covariance
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matrix generally tends to underestimate smoothing parameters (Diggle _ Hutchinson, 1989;

Waag, 1998; Opsomer, Wang, _ Yang, 2001). From this point it seems to be interesting to

stress the good behavior of our locally-based and global kernel PLS regression methods on a

problem with colored noise added to generated ERP. Using the clean desired signals we have

tried to tune the level of smoothness in the case of smoothing splines to its optimal or near

optimal values. However, this approach did not outperform results achieved with the (locally-

based) kernel PLS regression because comparable values of NRMSE and CC were observed.
The kernel PLS based approaches also resulted in better performance in comparison to the

wavelet de-noising using the shrinkage criterion design to deal with colored noise (Johnstone

Silverman, 1997). This success may be explained by the different approach to the constructing

the final regression model in kernel PLS. _J,Ze construct a set of orthogona! components that

increasingly describe the variance of the noisy observed signals. Thus, with the aim to recover

a smooth signal of interest we may limit the number of components to a predefined maximum

value and to use a model selection criterion to set a final number of them. In this paper we

have used the VC-based model selection criterion that provided satisfactory results. However,

we have to note, that on the investigated data sets we have observed a failure of this model

selection criterion when the maximum number of components allowed to enter the model

was-h=_gher _ge__er-ail), more -than- 8-1_0-in- the -case .of locaL!y-based ker-nel--P-LS and-more .than

14-16 in the case of kernel PLS). We may hypothesize that this is due to the rapid increase

of complexity (as defined in Section 2.3) of higher components which is not appropriately

reflected in the setting of experimentally designed VC-based criterion used. It also remains

an open task to compare different existing model selection criteria in this scenario.

On the artificially generated ERP data set we have observed that by using different spatio-

temporal arrangements of the signals from different electrodes in our multivariate (locally-

based) kernel PLS models we achieved very comparable results. This may be consider as both

negative and positive. On the negative side, our belief that this arrangement may provide us

some additional common information from measurements on different electrodes and trials in

comparison to single electrode and single trial was not confirmed. More detailed inspection

suggests that the differences between these two strategies of setting the outputs start to be

more evident when higher numbers of PLS components (describing also noisy part of the

signal) are included into the final regression model. However, this is contradictory to our

goal Of smoothing the ERP signals where a lower number of components is needed. Our

observations indicate that these very first components are generally very similar in the case of

univariate (single trial single electrode) and also in the case of multivariate outputs based on a

different spatio-temporal setting. Thus, it is not surprising that using these components in the

final regression model results in comparable performance. On the positive side, the possibility

_to_extract desired components using all electrodes from one or several trials occurred in our

case to be computationally easier in comparison to the extraction of components from each

electrode and trial independently.
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